Part Number Hot Search : 
I8023 KRA102 02010 HD64F2 HPA32BX AM168 90000 SD103
Product Description
Full Text Search
 

To Download MMBT2369LT1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MMBT2369LT1, MMBT2369ALT1
MMBT2369ALT1 is a Preferred Device
Switching Transistors
NPN Silicon
MAXIMUM RATINGS
Rating Collector-Emitter Voltage Collector-Emitter Voltage Collector-Base Voltage Emitter-Base Voltage Collector Current - Continuous Symbol VCEO VCES VCBO VEBO IC Value 15 40 40 4.5 200 Unit Vdc Vdc Vdc Vdc mAdc 1 BASE 2 EMITTER COLLECTOR 3
http://onsemi.com
THERMAL CHARACTERISTICS
Characteristic Total Device Dissipation FR-5 Board (Note 1) TA = 25C Derate above 25C Thermal Resistance, Junction to Ambient Total Device Dissipation Alumina Substrate, (Note 2) TA = 25C Derate above 25C Thermal Resistance, Junction to Ambient Junction and Storage Temperature Symbol PD Max 225 1.8 RqJA PD 556 300 2.4 RqJA TJ, Tstg 417 -55 to +150 Unit mW
3 mW/C C/W mW mW/C C/W C 1 2 SOT-23 CASE 318 STYLE 6
MARKING DIAGRAMS
1. FR-5 = 1.0 0.75 0.062 in. 2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.
M1J X
1JA X
MMBT2369LT1
MMBT2369ALT1
M1J, 1JA = Specific Device Code X = Date Code
ORDERING INFORMATION
Device MMBT2369LT1 MMBT2369ALT1 Package SOT-23 SOT-23 Shipping 3000/Tape & Reel 3000/Tape & Reel
Preferred devices are recommended choices for future use and best overall value.
(c) Semiconductor Components Industries, LLC, 2002
1
May, 2002 - Rev. 3
Publication Order Number: MMBT2369LT1/D
MMBT2369LT1, MMBT2369ALT1
ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (Note 3) (IC = 10 mAdc, IB = 0) Collector-Emitter Breakdown Voltage (IC = 10 Adc, VBE = 0) Collector-Base Breakdown Voltage (IC = 10 mAdc, IE = 0) Emitter-Base Breakdown Voltage (IE = 10 mAdc, IC = 0) Collector Cutoff Current (VCB = 20 Vdc, IE = 0) (VCB = 20 Vdc, IE = 0, TA = 150C) Collector Cutoff Current (VCE = 20 Vdc, VBE = 0) MMBT2369A V(BR)CEO 15 V(BR)CES 40 V(BR)CBO 40 V(BR)EBO 4.5 ICBO - - ICES - - 0.4 - - 0.4 30 Adc - - Adc - - Vdc - - Vdc - - Vdc Vdc
ON CHARACTERISTICS
DC Current Gain (Note 3) (IC = 10 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 0.35 Vdc) (IC = 10 mAdc, VCE = 0.35 Vdc, TA = -55C) (IC = 30 mAdc, VCE = 0.4 Vdc) (IC = 100 mAdc, VCE = 2.0 Vdc) (IC = 100 mAdc, VCE = 1.0 Vdc) Collector-Emitter Saturation Voltage (Note 3) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 10 mAdc, IB = 1.0 mAdc, TA = +125C) (IC = 30 mAdc, IB = 3.0 mAdc) (IC = 100 mAdc, IB = 10 mAdc) Base-Emitter Saturation Voltage (Note 3) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 10 mAdc, IB = 1.0 mAdc, TA = -55C) (IC = 30 mAdc, IB = 3.0 mAdc) (IC = 100 mAdc, IB = 10 mAdc) hFE MMBT2369 MMBT2369A MMBT2369A MMBT2369A MMBT2369A MMBT2369 MMBT2369A VCE(sat) MMBT2369 MMBT2369A MMBT2369A MMBT2369A MMBT2369A VBE(sat) MMBT2369A MMBT2369A MMBT2369A MMBT2369A 0.7 - - - - - - - 0.85 1.02 1.15 1.60 - - - - - - - - - - 0.25 0.20 0.30 0.25 0.50 Vdc 40 - 40 20 30 20 20 - - - - - - - 120 120 - - - - - Vdc -
SMALL-SIGNAL CHARACTERISTICS
Output Capacitance (VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz) Small Signal CurrentGain (IC = 10 mAdc, VCE = 10 Vdc, f = 100 MHz) Cobo - hfe 5.0 - - - 4.0 - pF
SWITCHING CHARACTERISTICS
Storage Time (IB1 = IB2 = IC = 10 mAdc) Turn-On Time (VCC = 3.0 Vdc, IC = 10 mAdc, IB1 = 3.0 mAdc) Turn-Off Time (VCC = 3.0 Vdc, IC = 10 mAdc, IB1 = 3.0 mAdc, IB2 = 1.5 mAdc) 3. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2.0%. ts - ton - toff - 10 18 8.0 12 ns 5.0 13 ns ns
http://onsemi.com
2
MMBT2369LT1, MMBT2369ALT1
SWITCHING TIME EQUIVALENT TEST CIRCUITS FOR 2N2369, 2N3227
+10.6 V 0 -1.5 V t1 3V 270 +10.75 V Cs* < 4 pF 0 -9.15 V t1 270
< 1 ns
3.3 k
PULSE WIDTH (t1) = 300 ns DUTY CYCLE = 2%
< 1 ns PULSE WIDTH (t1) = 300 ns DUTY CYCLE = 2%
3.3 k
Cs* < 4 pF
*Total shunt capacitance of test jig and connectors.
Figure 1. ton Circuit - 10 mA
95
Figure 3. toff Circuit - 10 mA
t1 95
+10.8 V -2 V 0
t1
10 V
+11.4 V Cs* < 12 pF 0 -8.6 V
10 V
< 1 ns
1k
< 1 ns
1k 1N916
Cs* < 12 pF
PULSE WIDTH (t1) = 300 ns DUTY CYCLE = 2%
PULSE WIDTH (t1) BETWEEN 10 AND 500 s DUTY CYCLE = 2% *Total shunt capacitance of test jig and connectors.
Figure 2. ton Circuit - 100 mA
Figure 4. toff Circuit - 100 mA
TO OSCILLOSCOPE INPUT IMPEDANCE = 50 RISE TIME = 1 ns Vout 0 TURN-OFF WAVEFORMS Vin Vout +V =3V - CC toff 10% 90% VBB = +12 V Vin = -15 V
TURN-ON WAVEFORMS Vin 0 ton 10% Vout 90% Vin 3.3 k 3.3 k 0.0023 F 0.005 F VBB + 0.1 F 0.0023 F 0.005 F 0.1 F 50 220 0.1 F
PULSE GENERATOR Vin RISE TIME < 1 ns SOURCE IMPEDANCE = 50 PW 300 ns DUTY CYCLE < 2%
50
Figure 5. Turn-On and Turn-Off Time Test Circuit
6 5 4 CAPACITANCE (pF) 3 Cib Cob 100 50 SWITCHING TIMES (nsec) tr (VCC = 3 V) tf tr
TJ = 25C
LIMIT TYPICAL
F = 10 VCC = 10 V VOB = 2 V VCC = 10 V
20 10 5
2
ts
td 50 100
1 0.1
0.2
0.5 1.0 2.0 REVERSE BIAS (VOLTS)
5.0
10
2
1
2
5 10 20 IC, COLLECTOR CURRENT (mA)
Figure 6. Junction Capacitance Variations
Figure 7. Typical Switching Times
http://onsemi.com
3
MMBT2369LT1, MMBT2369ALT1
500 VCC = 10 V 25C 100C QT, F = 10 QT, F = 40 +5 V 100 0 50 QA, VCC = 10 V 20 10 QA, VCC = 3 V V < 1 ns 270 VALUES REFER TO IC = 10 mA TEST Cs* < 4 pF
200 CHARGE (pC)
t1
3V 10 pF MAX
PULSE WIDTH (t1) = 5 s DUTY CYCLE = 2%
4.3 k
Figure 9. QT Test Circuit
50 100
1
2
5 10 20 IC, COLLECTOR CURRENT (mA)
Figure 8. Maximum Charge Data
C < COPT C COPT TIME
C=0
+6 V -4 V
t1 0 < 1 ns
10 V
980
500
Cs* < 3 pF
PULSE WIDTH (t1) = 300 ns DUTY CYCLE = 2%
Figure 10. Turn-Off Waveform
VCE , MAXIMUM COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 11. Storage Time Equivalent Test Circuit
1.0 TJ = 25C IC = 3 mA IC = 10 mA IC = 30 mA IC = 50 mA IC = 100 mA
0.8
0.6
0.4
0.2 0.02
0.05
0.1
0.2
0.5 1 IB, BASE CURRENT (mA)
2
5
10
20
Figure 12. Maximum Collector Saturation Voltage Characteristics
http://onsemi.com
4
MMBT2369LT1, MMBT2369ALT1
200 hFE , MINIMUM DC CURRENT GAIN TJ = 125C 100 75C 25C -15C 50 -55C
VCE = 1 V
TJ = 25C and 75C
20
1
2
5
10 IC, COLLECTOR CURRENT (mA)
20
50
100
Figure 13. Minimum Current Gain Characteristics
1.4 V(sat) , SATURATION VOLTAGE (VOLTS) 1.2 1.0 0.8 0.6 0.4 0.2 MAX VCE(sat) 1 2 5 10 20 IC, COLLECTOR CURRENT (mA) 50 100 F = 10 TJ = 25C COEFFICIENT (mV/ C) MAX VBE(sat) MIN VBE(sat)
1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 0 10 VB for VBE(sat)
VC VB
VC for VCE(sat)
APPROXIMATE DEVIATION FROM NOMINAL -55C to +25C 0.15 mV/C 0.4 mV/C 25C to 125C 0.15 mV/C 0.3 mV/C
(25C to 125C) (-55C to +25C)
(-55C to +25C) (25C to 125C)
20
30 40 50 60 70 IC, COLLECTOR CURRENT (mA)
80
90
100
Figure 14. Saturation Voltage Limits
Figure 15. Typical Temperature Coefficients
http://onsemi.com
5
MMBT2369LT1, MMBT2369ALT1 INFORMATION FOR USING THE SOT-23 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection
0.037 0.95
interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.
0.037 0.95
0.079 2.0 0.035 0.9 0.031 0.8
inches mm
SOT-23 SOT-23 POWER DISSIPATION SOLDERING PRECAUTIONS The power dissipation of the SOT-23 is a function of the The melting temperature of solder is higher than the rated pad size. This can vary from the minimum pad size for temperature of the device. When the entire device is heated soldering to a pad size given for maximum power to a high temperature, failure to complete soldering within dissipation. Power dissipation for a surface mount device is a short time could result in device failure. Therefore, the determined by TJ(max), the maximum rated junction following items should always be observed in order to temperature of the die, RJA, the thermal resistance from the minimize the thermal stress to which the devices are device junction to ambient, and the operating temperature, subjected. TA. Using the values provided on the data sheet for the SOT-23 package, PD can be calculated as follows: * Always preheat the device. * The delta temperature between the preheat and soldering TJ(max) - TA PD = should be 100C or less.* RJA * When preheating and soldering, the temperature of the The values for the equation are found in the maximum leads and the case must not exceed the maximum ratings table on the data sheet. Substituting these values into temperature ratings as shown on the data sheet. When the equation for an ambient temperature TA of 25C, one can using infrared heating with the reflow soldering method, calculate the power dissipation of the device which in this the difference shall be a maximum of 10C. case is 225 milliwatts. * The soldering temperature and time shall not exceed 150C - 25C 260C for more than 10 seconds. PD = = 225 milliwatts 556C/W * When shifting from preheating to soldering, the maximum temperature gradient shall be 5C or less. The 556C/W for the SOT-23 package assumes the use of the recommended footprint on a glass epoxy printed circuit * After soldering has been completed, the device should be board to achieve a power dissipation of 225 milliwatts. allowed to cool naturally for at least three minutes. There are other alternatives to achieving higher power Gradual cooling should be used as the use of forced dissipation from the SOT-23 package. Another alternative cooling will increase the temperature gradient and result would be to use a ceramic substrate or an aluminum core in latent failure due to mechanical stress. board such as Thermal Clad(R). Using a board material such * Mechanical stress or shock should not be applied during as Thermal Clad, an aluminum core board, the power cooling. dissipation can be doubled using the same footprint. * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.
http://onsemi.com
6
MMBT2369LT1, MMBT2369ALT1
PACKAGE DIMENSIONS
SOT-23 (TO-236) CASE 318-08 ISSUE AH
A L
3 1 2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318-03 AND -07 OBSOLETE, NEW STANDARD 318-08. DIM A B C D G H J K L S V INCHES MIN MAX 0.1102 0.1197 0.0472 0.0551 0.0350 0.0440 0.0150 0.0200 0.0701 0.0807 0.0005 0.0040 0.0034 0.0070 0.0140 0.0285 0.0350 0.0401 0.0830 0.1039 0.0177 0.0236 MILLIMETERS MIN MAX 2.80 3.04 1.20 1.40 0.89 1.11 0.37 0.50 1.78 2.04 0.013 0.100 0.085 0.177 0.35 0.69 0.89 1.02 2.10 2.64 0.45 0.60
BS
V
G C D H K J
STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR
http://onsemi.com
7
MMBT2369LT1, MMBT2369ALT1
Thermal Clad is a registered trademark of the Bergquist Company.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.
http://onsemi.com
8
MMBT2369LT1/D


▲Up To Search▲   

 
Price & Availability of MMBT2369LT1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X